innovative transportation solutions

Park City Mountain Resort Transportation Analyses

Park City, Utah

April 20, 2021
UT19-1481

SUMMARY

Hales Engineering completed several multi-modal transportation analyses for the proposed Park City Mountain Resort development in Park City, Utah. Five memorandums have been created based on various requests by Park City staff and their consultants. Below are the five memorandums with links to each one in this document.

1 - Scenario 2b Evaluation (02/09/2021)

- Evaluated transit and vehicle operations with VISSIM simulation analysis
- Recommended mode split goals
- Evaluated transit travel time and intersection control

2 - Parking Study (02/11/2021)

- Established City parking requirements
- Used time-of-day shared use and actual observed demand to recommend minimum stall count

3 - Additional Traffic Information (02/26/2021)

- Provided additional details on modified mode split
- Addressed questions regarding site circulation and the pick-up / drop-off areas

4 - Responses to AECOM Review (03/22/2021)

- Responded to comments from AECOM's review of previous memorandums

5 - People-Based Analysis (04/20/2021)

- Outlined people-based analysis that was completed with Park City staff and AECOM

1 - Scenario 2b Evaluation 02/09/2021

MEMORANDUM

Date: \quad February 9, 2021
To: Park City
From: Hales Engineering

Subject: Park City Mountain Resort - Scenario 2b Year 2040 Evaluation

Introduction

This memorandum discusses the evaluation of Scenario 2b for the Park City Mountain Resort area. Scenario $2 b$ includes exclusive transit lanes, with a transit route on Silver King and Lowell. The bus station would be located at the current location, on the south side of Lowell by parcel B. A concept of this scenario is shown in Figure 2.

Traffic Analysis

Background Traffic Volumes

Most of the traffic counts used for the intersections were collected in February 2017 and were increased by approximately 14%, as discussed in the previous PCMR TIS, to bring the volumes up to a peak ski season level. Other counts were collected by Park City or Hales Engineering in other times of year and adjusted accordingly to match peak February conditions.

Future background traffic growth was determined based on the Summit County / Wasatch County travel demand model (TDM) results for winter conditions. The growth internal to the PCMR base area estimated by the TDM was almost identical (within ~ 20 peak hour vehicles) to that estimated previously with a 1% growth rate per year, so the previous volume growth that was used was implemented for this analysis. Hales Engineering used the people-based analysis to estimate volume elements such as pedestrian volumes and pick-ups and drop-offs, etc.

Project Traffic

New PCMR project traffic was added on top of the background traffic to get future (2040) plus project conditions. The trip generation was updated to represent the latest land uses for the proposed development. Trip generation and occupied percentages for condos and hotel units came from local trip data collected at the Canyons Resort area in 2018. Detailed trip data from the Canyons can be found with Summit County. Trends in the Canyons area indicated high internal capture percentages of 95% for retail space. To be conservative, 80% internal capture
was assumed for retail for the Park City development. Detailed trip generation calculations are provided in Appendix A.

Mode Split

Hales Engineering evaluated the transportation system of the resort area under two mode split conditions: a base scenario and a modified scenario. The base scenario represents the current mode split of today's operations without increased percentage of transit, shuttle, walking, and other alternative modes of transportation. The modified scenario was created to identify the change in mode split required to achieve a 20% reduction in overall vehicle volumes in the study area. As discussed later, this reduction was identified as a needed reduction in traffic to make the intersections work at an acceptable level of service. This reduction would need to be a global goal for PCMR and the City to work towards for both existing and proposed traffic.

The mode split of the base and modified scenarios are summarized in Figure 1, shown in percentages of people that use passenger vehicles, transit/shuttles, and walking/lifts to travel to and from the Park City Mountain Resort base area.

Figure 1: Mode Split Scenarios

Assumptions

The following assumptions were made for Scenario 2b:

- Four (4) traffic signals internal to the PCMR base area at Empire Avenue / Silver King Drive, Lowell Avenue / Silver King Drive, Shadow Ridge Road/ Empire Avenue, and Shadow Ridge Drive / Lowell Avenue
- A HAWK pedestrian crossing on Lowell Avenue between parcels C and D.
- Silver King Drive / Empire Avenue lane configuration:
- EB: Left-turn lane and shared left-through-right lane
- WB: Shared left-through-right lane
- NB: Thru lane and shared through-right lane (no left turn)
- SB: Right-turn lane (general purpose) and shared through-right lane (right for transit, and through for general purpose)
- Split-side phasing on the EB and WB approaches due to the lane configuration
- Transit lanes can be exclusive starting and ending at the Silver King / Empire intersection. In other words, transit flow must be mixed with general purpose traffic north of Silver King.

VISSIM Model

Hales Engineering completed a VISSIM traffic simulation model to analyze the proposed Scenario 2 b for transit and general-purpose vehicle operations. Included within the model were parameters for the transit-only lanes, bus stops, drop-off areas, traffic signals, etc.

The initial model runs of the base mode split scenario for both morning and evening peak hours resulted in excessive queueing and delays at the Park Ave. / S.R. 224 / Empire Ave. intersection. Based on Park City and UDOT's desires to not make any lane change and capacity improvements to this intersection, the resulting option is to reduce vehicle volume in the area with mode shifts (transit, shuttles, walking, biking). Because of this, Hales Engineering completed a sensitivity analysis to determine how much traffic would need to be reduced globally in a modified mode split for the Park Ave. / S.R. 224 / Empire Ave. intersection to work at an acceptable LOS. It was found that a reduction of approximately 20% would be needed. The results of the VISSIM model for the base and modified mode split scenarios are provided in the following sections.

Transit Travel Time

Hales Engineering calculated the bus travel times for the site using the time it would take to travel the entire bus loop plus the delay buses would experience along the route. The travel times did not include any dwell time at the bus station or stop. It is anticipated that buses will have a loop travel time of approximately 3 minutes 8 seconds, and 3 minutes 4 seconds from and to the Silver King Drive / Empire Avenue intersection for morning and evening peak hours, respectively. This was assuming the modified mode split scenario.

Level of Service

The level of service results for the base and modified mode split scenarios are shown in Table 1. As shown, poor levels of service are anticipated at several intersections in the base mode split scenario, including excessive delays and queueing on S.R. 224 at the Park Avenue / Deer Valley Drive intersection.

Though the City and UDOT have decided not to make major improvements to the Park Avenue / Deer Valley Drive intersection, one improvement that could be considered is striping a channelized lane on the southbound right-turn movement of the Park Avenue / Deer Valley Drive intersection on the existing pavement. This would help alleviate some delays in the morning peak hour especially. However, assuming this improvement may not be possible, Hales Engineering also ran the modified mode split scenario to show how the intersections would work. As shown in Table 1, it is anticipated that all study intersections except the East B Access / Empire Avenue intersection would operate at an acceptable LOS with the modified mode split.

Table 1: Level of Service

	Intersection	Future (2040) Plus Project - Scenario 2b			
		Base Mode Split		Modified Mode Split	
		AM	PM	AM	PM
1	S.R. 224 / S.R. 248	F	C	C	C
2	Homestake Ave / Park Ave	f	f	c	c
3	Iron Horse / Park Ave	f	f	b	c
4	Park Ave / Deer Valley Dr	E	F	D	D
5	Silver King Dr / Empire Ave	B	D	B	B
6	Lowell Ave / Silver King Dr	B	B	B	B
7	Three Kings Dr / Silver King Dr	a	c	a	c
8	Shadow Ridge Rd/ Empire Ave	B	C	B	B
9	Shadow Ridge Rd/ Lowell Ave	C	E	c	C
10	14th St / Empire Ave	c	c	b	c
11	Manor Way / Empire Ave	a	c	a	b
12	Manor Way / Lowell Ave	b	f	a	b
13	NE E Access / Silver King Dr	b	d	b	c
14	East D Access / Empire Ave ${ }^{3}$	f	f	d	d
15	West D Access / Lowell Ave	c	d	b	b
16	C Access / Lowell Ave	e	f	c	b
17	North B Access / Shadow Ridge Rd	b	f	a	b
18	East B Access / Empire Ave	e	f	c	f
19	South B Access / Manor Way	b	f	b	d

[^0]
Evaluation

Hales Engineering evaluated Scenario 2b based on criteria and questions provided by Park City staff, summarized as follows:

General Pros \& Cons

Pros:

- Transit is given priority on-site
- Transit station stays at current location with seven (7) bus bays
- Additional transit stop location on Silver King Drive
- Safe pedestrian crossing locations
- Minimal impacts to Silver King Drive
- Empire Avenue keeps two-way flow
- Two general purpose drop-off locations

Cons:

- Permanent changes to Lowell for drop-off loops
- Four traffic signals and a HAWK pedestrian signal for Park City to operate
- Potential congestion on Empire Avenue during peak hours

Do the intersections work? Impacts of traffic signals?
With the base mode split scenario, poor levels of service are anticipated at several intersections including S.R. 224 / S.R. 248, Park Avenue / Deer Valley Drive, and Shadow Ridge Road / Lowell Avenue, as well as several unsignalized intersections. With the modified mode split scenario, it is anticipated that all study intersections will operate at an acceptable LOS except for the East B Access / Empire Avenue intersection. To make the traffic signal system work well, the signals will have to be coordinated with each other to allow for good traffic flow around the site.

Does the bus station work?
Hales Engineering evaluated the bus station from a traffic operations perspective. A conservative assumption of 50 buses per hour was assumed coming to the site during peak hours. That is nearly 1 bus arriving to the bus station per minute. With seven (7) bus bays planned at the station, that provides buses with up to seven minutes of dwell time before having to depart the transit station. It is anticipated, therefore, that the seven (7) proposed bus bays will be sufficient. In the case that buses are delayed at the station, there is still some storage area on Lowell leading up to the station for buses to queue up in, if necessary. This is a great benefit of the transit-only lanes.

Intersection Control

The proposed intersection control is shown in Figure 2. As shown, four traffic signals are being proposed to provide bus priority and efficient traffic flow. A controlled pedestrian crossing with signalization (HAWK) is proposed on Lowell Avenue between parcels C and D. All other intersections and accesses will have stop control.

Pedestrian and Bike Accommodations

The proposed pedestrian and bike paths, crossing, and volumes are shown in Figure 3. A multiuse trail is being proposed along Lowell Avenue and looped around Parcel B. Sidewalks are being planned at other locations to tie into existing sidewalks. The traffic signals will provide safe pedestrian crossings for many of the pedestrians walking through the Park City Mountain base area. Crosswalks will be provided across each project access as well. Some existing sidewalks will remain untouched (shown in white in Figure 2) while others will be replaced with new sidewalk or a multi-use trail. Additional safe pedestrian walking paths will be provided in the plaza areas on all parcels, connecting the new resort area with the existing facilities.

Parking and Driveways

A map summarizing the supply for the project and day skier parking is shown in Figure 4. The approximate stalls assigned or located closest to each access is summarized in the figure as well. 1,720 total stalls are planned to be provided on site including 1,200 day skier parking stalls split up between Parcels B and E.

Three Kings Drive Traffic Deterrents

A raised median has been designed for Silver King Drive in front of the Parcel E access to restrict left turns out onto Silver King.

Drop-off Area Queue Storage

It is recommended that both the north drop-off area and the south drop-off loop on Lowell Avenue be available for general purpose resort and day skier traffic. This will maximize the drop-off area on site to reduce back-ups during peak times. It is anticipated that there will be enough pick-up / drop-off area if both the north Lowell and south Lowell drop-off locations are used for general purpose traffic.

Walking Distance from Transit

Hales Engineering evaluated the walking distance from the proposed transit station on Lowell to the Payday Lift and compared this walking distance to other resorts. A summary of the walking distances is shown in Table 2.

Table 2: Walking Distance from Transit

Resort	Transit Station/Stop	Lift(s)	Walking Distance (ft)
Park City	Lowell Avenue	Payday	700
Deer Valley	Deer Valley Dr.	Carpenter	450
Canyons	Canyons Transit Hub	Cabriolet + Red Pine + Saddleback	700

2 - Parking Study
 02/11/2021

MEMORANDUM

Date:
February 11, 2021
To: Park City
From: Hales Engineering

Subject: Park City Mountain Resort Parking Study

This memorandum discusses the parking study completed for the proposed Park City Mountain Resort development located in Park City, Utah. The study identifies the Park City parking requirements and considers shared parking between land uses. The proposed Park City Mountain Resort development is located on four parcels adjacent to the existing Park City Mountain Resort, as shown in Figure 1.

Figure 1: Site vicinity map of the project in Park City, Utah

Park City Parking Code

The Park City code specifies parking rates for various land use types in Section 15-3-6. The City parking rates for land uses within the proposed area of the resort are summarized in Table 1.

Table 1: Park City Parking Rates

Land Use	Parking Rate
Hotel	1 space per room plus 5 spaces per 1,000 sf of separately leasable commercial space
Condominium	$<1,000$ sf: $1,000-2,000$ space per dwelling unit 1.5 spaces per dwelling unit $>2,000$ sf: 2 spaces per dwelling unit
Retail \& Service Commercial, Minor	3 spaces per 1,000 sf of net leasable space
Retail \& Service Commercial, Major	5 spaces per 1,000 sf of net leasable space
Multi-tenant commercial complex	3.5 spaces per 1,000 sf of leasable floor area
Meetings space	5 spaces per 1,000 square feet
Restaurant, standard and bar	10 spaces per 1,000 square feet net leasable area

Being programmed within the project are 1,200 parking spaces for day skier use, separate from the existing 300 day skier stalls provided by Vail. Based on initial calculations of the parking needed for the proposed land uses, the City would normally require 2,223 parking spaces, including the day skier parking. A detailed table outlining required parking is provided in Appendix A.

Nearby Resort Experience

Recently, Hales Engineering collected data at a nearby ski resort and identified how people arrive to a resort. The following data is an average of 9 separate locations counted within the studied resort area and identifies:

- 57% drove a vehicle to the resort
- 18% rode in a shuttle
- 15% rode in an Uber / Lyft vehicle
- 9.4% rode in a black car or other transport vehicle
- 0.6% rode in transit, an individual location identified that 5% rode transit

Hales Engineering has also collected overnight parking demand data at a nearby ski resort. Based on a total of 34 data points collected over four peak nights between 2017 and 2019, it was found that the overnight demand was an average of 0.68 stalls per occupied unit and an $85^{\text {th }}$ percentile of 0.99 stalls per occupied unit.

Time-of-day Shared Use

Many land uses are able to share parking due to offsetting peaks in parking demand. It is anticipated that this will be the case for Parcels B, C, D and E of the Park City Mountain Resort
project along with the day skier parking needs. Designing for the actual parking demand for a mixed-use project results in efficient use of parking spaces. The Institute of Transportation Engineers (ITE) provides percentages of parking demand throughout the day for many land uses in the Parking Generation ($5{ }^{\text {th }}$ Edition, 2019) manual.

Hales Engineering made conservative estimates regarding the hourly parking demand of the meeting space land use, as these are not available from ITE. The day skier parking being programed into the site, 1,200 stalls, will not be included within the share parking calculations to remain conservative, and will remain at a fixed level. Also, as discussed previously, a parking demand of 0.99 stall per occupied unit is anticipated based on 34 data points. Therefore, a parking demand rate of 1.0 stall per occupied unit was assumed for most residential and hotel units. A percent occupied rate of 85% was assumed for residential and hotel units, consistent with the traffic analyses. PEG development does not anticipate any parking demand for employees that live on site. Therefore, it was assumed that no stalls were needed for employee housing.

Hales Engineering identified a mixed use / time of day parking demand for each land use for every hour of the day to determine the actual parking demand for Parcels B, C, D, and E. Internal capture rates were estimated and matched with those presented in the traffic analyses. A summary of these calculations are provided in Appendix B and shown graphically in Figure 2.

As shown in Figure 2, it is anticipated that the peak parking demand when considering shared use and time-of-day needs will be approximately 1,583 parking vehicles at 9:00 pm. This includes fixed day skier parking stalls (reserved) in both Parcel B (760 stalls) and Parcel E (440 stalls) during each hour of the day. It is anticipated that at the peak parking demand hour (9:00 pm), an additional 138 stall surplus will still be available on-site (8\%) at all times for the combined parking lot supply of 1,721 parking stalls.

Conclusions / Recommendations

Hales Engineering concludes the following:

- The proposed project is programming 1,200 day-skier parking stalls (current surface stalls on Parcels B, C, D and E) be provided somewhere on the site during and after construction of the project.
- Park City parking rates would require a parking supply of 2,223 stalls (including the programmed 1,200 stalls for the day-skiers).
- Hales Engineering completed a parking study at a near-by resort and has identified that actual parking rates per residential unit are lower than the projected ITE rates.
- Utilizing mixed use reductions, time of day parking needs, and occupancy values, while fixing the day-skier parking (1,200 stalls) results in a peak shared parking demand of 1,583 vehicles.
- The parking supply on-site will be 1,721 stalls; therefore, at peak demand (1,583 stalls) there will be an 8% surplus of stalls (138 stalls).

Figure 2: PCMR Parking Demand by Time of Day

- Dynamic parking signs will be placed in strategic locations within the resort and on the parking structures to guide patrons to open parking spaces within Parcels B, C, D and E, creating a more efficient hunt for parking availability.
- Parcels B, C, D, and E, will all have shuttle service provided to move patrons around Park City, if scheduled in advance.
- The Park City Mountain bus pull out area is being expanded with the proposed project from 3 to 7 spaces aligned in a more efficient layout to increase transit opportunities and potentially increase bus frequency, with landowner's cooperation.
- Paid parking will be instituted into the proposed project, and it is anticipated that transit ridership will increase, and passenger vehicle occupancy will also increase.
- A day skier drop-off / pick-up area is being programmed into the site between Parcels C and E .
- The following potential measures could be implemented to encourage alternative modes of arrival to the resort:
- Advertise remote day skier parking at Ecker Hill park and ride lot
- Promote employee remote parking (see Vail's employee parking management plan), promote employee existing retail / base to ride transit from remote areas
- Promote other remote lots including high school, etc.
- Parking allocated to condo / hotel will be actively managed and surplus will be made available to general public / day skiers
- Ski lockers for day skiers and season rentals can be added which will promote bus ridership
- Preferred parking for carpoolers
- Encourage residential properties to provide patron discounts for Uber / Lyft / Black Car Service arrivals / departures
- Encourage through the booking process alternatives forms of arrival / departure other than rental vehicles

3 - Additional

Traffic Information

02/26/2021

MEMORANDUM

Date: \quad February 26, 2021
To: Park City
From: Hales Engineering

Subject: Park City Mountain Resort - Additional Traffic Information

This memorandum provides additional information related to the proposed Scenario 2 b for the Park City Mountain Resort area, as requested by Park City staff.

Modified Mode Split

As discussed previously, Hales Engineering has identified a modified mode split that needs to be reached in the Park City Mountain Resort area and nearby City traffic movements to achieve acceptable levels of service. The mode split of the base and modified scenarios are summarized in Figure 1, shown in percentages of people that use passenger vehicles, transit/shuttles, and walking/lifts to travel to and from the Park City Mountain Resort base area. It is anticipated that the modified mode split would result in a 20% reduction in peak hour vehicle trips in and out of the site.

Figure 1: Mode Split Scenarios
Park City staff requested additional information as to how this modified mode split will be achieved. Hales Engineering has summarized the transportation demand management (TDM) strategies from PEG's draft TDM plan and how these strategies can be applied to reach certain reductions in vehicle traffic. Hales Engineering has classified all strategies in four primary highlevel TDM strategies / categories. The strategies and anticipated reductions are provided in Table 1. The sub-strategies for each high-level strategy are listed as follows:

Table 1: High-Level TDM Strategies and Anticipated Reductions

High-Level TDM Strategy		Peak Hour Vehicle Trip Reduction	\% Reduction
1	Increase day skier AVO from assumed 2.7 to a 3.1	116	4.3%
2	Increase transit capacity and incentives (36 buses per hour)	360	13.5%
3	Increase shuttle capacity and incentives	18	0.7%
4	Other Improvements	$40+$	$1.5 \%+$
	TOTAL	$534+$	$20 \%+$

1: Increase day skier AVO from assumed 2.7 to 3.1 on peak day
Calculation: For 2,430 day skiers coming/going in peak hour, calculated difference in vehicles for 2.7 AVO (assumed for traffic analyses) versus 3.1 AVO.

- Designate a Transit / Parking Manager
- Coordinate with parking operations to assess and grow programs that will promote carpooling and ridesharing programs
- Implement paid parking system that incentivizes carpooling
- The parking and trips on site can be monitored and parking rates adjusted as needed to ensure an increase in AVO
- Install a dynamic parking monitoring program that broadcasts available stalls number on variable message signs
- Signs should be placed in advance of the PCM base area to alert drivers not to drive into the site to search for parking, in addition to alerting people via an app or via text messaging or emails
- Coordinate app with City and Resort that provides real-time parking information for guests

2: Increase transit capacity (50\% increase) and incentives

Calculation: Assumed increase from 48 bus trips to 72 future bus trips in peak hour (50\% increase). Also assumed average occupancy increase from 8 to 16, knowing that bus routes can be added that terminate at PCM, resulting in more people in buses. Removed passenger vehicle trips and added in bus trips.

- Designate a Transit / Parking Manager
- Increase transit capacity and frequency, from 24 buses per hour to 36 buses per hour
- Coordinate with Park City Municipal on public transportation from satellite lots and operation of the transit center at the base area
- Coordinate with Park City Municipal on potential enhancements to existing bus routes
- Implement paid parking system that incentivizes transit usage, beyond the benefit of increasing the AVO
- Coordinate app with City and Resort that provides alternative transit information for guests
- Continue to use variable message signing to direct drivers away from the resort when parking is full
- Install dedicated bus lanes on Silver King Drive and Lowell Avenue
- Install day skier lockers at the new base area to promote transit usage
- Upgrade the existing bus station at the base area with seven (7) bus bays, shelters, bike facilities, facilities for bus drivers, bus charging stations
- Consider potential bus stop on eastbound Silver King Drive
- Communicate transit information to all employees and guests, including new options such as the Quinn's Junction park and ride and proposed bus lanes
- Encourage existing PCM base employers to incentivize employee transit usage (PC-SLC Connect, UTA Vanpool, and RideOn for those living outside Park City; and Park City Transit for those living in Park City)
- Develop a robust information and communication system to inform stakeholders and employees of off-site parking areas, shuttle availability and schedules, carpooling using RideOn, and regional transit options
- Extend PC-SLC Connect bus pass program to all employees at the new base area

3: Increase shuttle capacity (10\% increase) and incentives
Calculation: Increase from assumed 60 shuttle trips to 66 future shuttle trips in peak hour. Also assumed average occupancy increase from 8. Removed passenger vehicle trips and added in shuttle trips.

- Designate a Transit / Parking Manager
- Implement paid parking system that incentivizes shuttle usage, beyond the benefit of increasing the AVO
- Establish new parking procedures that shift employee parking to alternate locations
- Create and/or fund enhanced private shuttle program to/from satellite lots
- Provide employee breakroom at new hotel with bathrooms and showers
- Provide employee bike storage facilities
- Develop a robust information and communication system to inform stakeholders and employees of off-site parking areas and shuttle availability / schedules
- Expand employee usage of the UTA van/shuttle program for new base area employees that live in Salt Lake City and Heber

4: Other Improvements

- Enhance pedestrian facilities on site with multi-use path and sidewalks throughout
- Enhance pedestrian connections to external points of access, including enhanced connections to Old Town
- Provide bike racks on site for guests and secured bike parking for residents
- Provide a Summit Bike Share station on site
- Provide annual report of the TDM plan and progress, and make necessary adjustments to reduce traffic volumes to acceptable level
- Incentivize carpooling with the RideOn Park City Platform for the new base area employees

Pick-up / Drop-off Area

Scenario 2 b has been designed with two primary pick-up / drop-off locations. The north pick-up / drop-off is located on the west side of Lowell Avenue, just south of Silver King Drive. This area will be used primarily for day skier pick-up / drop-off. It is anticipated that approximately eight passenger vehicles can fit in this area as currently planned.

The south pick-up / drop-off is a proposed loop on Lowell Avenue, just north of Manor Way, and just south of the proposed transit station. It is anticipated that this location will be used primarily for shuttle and condo resident pick-up / drop-off. It is anticipated that approximately eight shuttle vehicles can fit within this loop.

The traffic analysis included the north pick-up / drop-off in the VISSIM model, and it was modeled as a "parking" area for accurate dwell time simulation. Average dwell times of 2 minutes and 3.5 minutes were assumed for the morning and evening peak hours, respectively (knowing the morning drop-off takes less time than evening pick-up). It was observed in the modeling that the pick-up / drop-off area rarely filled up during the peak hours. In the VISSIM model, when the area was full, vehicles continued on in the system without entering the loading area. Because of this, Hales Engineering completed calculations to estimate better if the loading area sizes are sufficient.

The average required pick-up / drop-off space needed can be estimated by multiplying the hourly vehicle volume by the average dwell time and then dividing by 60 minutes to get to a number of vehicles at the pick-up/ drop-off area on average. A summary of this calculation for the north and south pick-up / drop-off areas is shown in Table 2 for both morning and evening peak hours. As shown, it is anticipated that average required space requirements of 8 vehicles and 6 vehicles are needed at the north and south pick-up / drop-off areas, respectively.

Table 2: Average Required Pick-up / Drop-off Space

Location	Time Period	Demand (veh. / hr)	Dwell Time (minutes)	Vehicles	Average Required Space
North	AM	225	2	7.5	8
	PM	125	3.5	7.3	
South	AM	85	2	5.0	6
	PM	160	3.5	5.3	

Based on this analysis, the two pick-up / drop-off locations have sufficient space for the average demand anticipated during peak hours. However, there may be times when immediate demand exceeds the average demand with surges in traffic, resulting in overflow of the pick-up / drop-off areas. Hales Engineering recommends the following to mitigate this condition:

- Assign at least one staff member for each pick-up / drop-off to direct traffic
- Locate space in a parking garage for temporary pick-up / drop-off overflow space
- Direct traffic to this location with signing and with staff members
- Consider finding other locations for pick-up / drop-off, such as on Shadow Ridge Road

Site Circulation

Hales Engineering updated the Scenario 2 b concepts to match other drawings developed by the project team and also created detailed concepts for key intersections and locations. All concepts are provided in Figures 2 through 5.

Scenario 2b
Transit and Vehicle Circulation and Control

4 - Responses to AECOM Review 03/22/2021

MEMORANDUM

Date: \quad March 22, 2021
To: Park City
From: Hales Engineering

Subject: Park City Mountain Resort - AECOM Review Responses

This memorandum provides responses to the AECOM review of the Park City Mountain Resort development documents. The review was dated March 18, 2021. Responses with clarification or commentary have been provided for various points of the review. Below are the references to the review points in black text and a response by Hales Engineering in blue.

1. Page 2, Recommendations Section 1: A transit hub on parcel C or D is recommended.
a. Locating a hub on parcel C or D would increase pedestrian / vehicle conflict compared with Scenario 2b. Scenario $2 b$ provides safe pedestrian crossings on Lowell Avenue south of Shadow Ridge with a dedicated pedestrian walkway and a controlled crosswalk at a signal (where only buses will be crossing). With a transit hub on parcel C, transit users will not have to cross Lowell Avenue, but more cars will be using Lowell Avenue to the south, resulting in heavy conflicts with thousands of day skiers crossing Lowell Avenue. A transit hub on parcel D would add even more pedestrians crossing Lowell Avenue.
b. To quantify the walking relative walking distance. Hales Engineering measured the potential walking distances to the Payday lift from potential 2 b hub, parcel C hub, and parcel D hub locations, as summarized below. As shown, the proposed scenario $2 b$ has the shortest walking distance to the Payday lift.

Transit Location	Walking Distance
2 b	725 feet $(0.14 \mathrm{mi})$
Parcel C	850 feet $(0.16 \mathrm{mi})$
Parcel D	1,450 feet $(0.27 \mathrm{mi})$

2. Page 3, Figure 1: Based on this figure, the Parcel D hub seems to be the preferred scenario by AECOM.
a. This scenario would result in the longest walking distance to the slopes and would have high pedestrian / vehicle conflicts.
3. Pages $4-5$, TDM bulleted summary
a. The TDM strategies listed here are not a complete list. Please see the 02/26/2021 memo by Hales Engineering to see a comprehensive bulleted summary of the strategies outlined in the current TDM.
4. Page 5, Section A3: Rate structure recommended for paid parking
a. Yes, a paid parking structure should be set it place. The plan is to set the rate and then adjust as necessary to discourage driving. Setting an exact rate for parking right now is unwise, as the rate will be adjusted based on observed conditions.
5. Page 5, Section A4: Additional information requested to increase AVO
a. Several strategies are summarized (from the TDM) to this end in the 02/26/2021 memo by Hales Engineering.
6. Page 6, Sections A8 and A9 Off-site employee parking / employee lockers and showers
a. These are already included in the TDM plan
7. Page 6, "Improve Pedestrian Experience"
a. Comparatively, the safety element of the pedestrian experience is better for Scenario 2b than the proposal of transit hubs on Parcel C or Parcel D, as outlined previously.
8. Page 7, Section B6 \& Page 8, Section C4: Recommendation to move Lowell crosswalk north to cut into the proposed drop-off area
a. We believe that the entire drop-off area as proposed is needed for pick-ups/dropoffs to avoid overflowing. Moving this crosswalk would remove drop-off space and cause congestion issues.
9. Page 8, Section B10: Pedestrian movement near Building B is circuitous
a. We believe the proposed pedestrian crossings are good routes. Pedestrians can cross at a controlled location at the Shadow Ridge / Lowell intersection. Only buses will be traveling through this pedestrian crossing location. Pedestrians can also cross at the dedicated pedestrian walkway area between the transit hub and the south pick-up / drop-off zone.
10. Page 9, Section E: "managing parking to around 800 in accordance with the modified mode split goal above"
a. Based on our modified split numbers, we believe this would more likely be between 900 and 950 vehicles, instead of 800 . However, your point is valid that there could excess space to facilitate some of the mentioned elements.
11. Page 10, $2^{\text {nd }}$ bullet of Section G: no improvements made to S.R. 224 / Empire Ave intersection; no no-build comparison in 2040
a. We were told previously that no improvements should be made at the S.R. 224 / Empire Ave intersection due to limited right-of-way, and due to the City and UDOT not wanting to make changes there. Therefore, we did not recommend any improvements there. However, we did mention on Page 3 of our memo dated 02/09/2021 that the City and UDOT could consider improvements there including striping a channelized southbound right-turn movement on the existing pavement. This would especially help in the morning peak hour for delays on S.R. 224. This improvement was not assumed for the analysis.
b. Due to time constraints of the submittal of our analyses, we went straight to a 2040 build scenario without running a no-build scenario. However, in a previous traffic impact study completed for this development, dated August 29, 2019, Hales Engineering did analyze 2040 no-build conditions. It was found then that the S.R. 224 / Empire Ave intersection would operate at LOS F in 2040 without the project.
12. Page 10, $2^{\text {nd }}$-to-last paragraph: No free right-turns recommended at Silver King Drive intersections due to pedestrian conflict
a. At Silver King / Empire, no crosswalk is being proposed across the proposed free right-turns (or across the west and north legs of the intersection). Therefore, no conflict is anticipated. If the free right-turns are removed and right-turns are controlled by the signal, it is anticipated that traffic may queue up onto S.R. 224 and other roadways.
b. At Lowell / Silver King, the free right is for buses only, so the conflict would be minimal there. However, the City could consider reducing the radius there as long as the buses can make the turn.
13. Page 10, last paragraph: Bus only lanes recommended on Empire Avenue, north of Silver King; bus only lane recommended for outside eastbound lane at Silver King / Empire intersection with queue jump for buses; bus only lane recommended for outside southbound right-turn lane at Silver King / Empire
a. We did not recommend bus only lanes on Empire north of Silver King knowing that it is a short distance for vehicles to make decisions and merge before getting to the S.R. 224 / Empire signal. Also, with queues that may back up a distance, vehicles will have to make their lane decision before they pass through the Silver King / Empire intersection. For this reason, we decided that buses should start merging and sharing lanes with other vehicles prior to the Silver King / Empire intersection for buses leaving the site.
b. Similar to the above reasoning, it is recommended that the outside eastbound lane become a shared lane prior to the Silver King / Empire intersection so that buses can choose the best lane to be in. This would also keep the outside lane available for cars wanting to travel through the intersection or make a right turn. The traffic volumes from the west will be low compared with those on Empire, so it is anticipated that the buses will still have sufficient priority to get through the Silver King / Empire intersection efficiently.
c. For buses entering the site, they need to be in the inside southbound right-turn lane at Silver King / Empire so that they are in the correct lane to turn onto Lowell and be in the inside southbound lane there.

5 - People-Based Analysis 04/20/2021

MEMORANDUM

Date: April 20, 2021
To: Park City
From: Hales Engineering

Subject: Park City Mountain Resort - People-Based Analysis

UT19-1481

Background and Methodology

This memorandum provides discusses the people-based analysis that was completed for the PCMR development.

In the review process of the PCMR project by Park City and AECOM in 2020, it was requested that a people-based analysis be completed to understand how many people access the Park City Mountain base area during a typical peak day and during peak hours. Hales Engineering completed this people-based analysis to identify the following:

- How many people use the resort area per day and per peak hour? What modes?
- How may buses will be needed to service the area?
- How many pedestrians will cross Lowell Avenue during peak hours?

To perform this people-based analysis, Hales Engineering gathered all available data to make calculations and estimations. The data gathered includes the following:

- Traffic counts
- Peak hour bus headway and ridership data (provided by Park City staff)
- Comfortable carrying capacity (CCC) of Park City Mountain (provided by SE Group)
- Number of employees at existing and proposed facilities (provided by Vail and PEG)
- Existing and proposed parking supply
- Current average vehicle occupancy (AVO) data for busy and peak days (provided by SE group)
- The number of residential units and nightly rentals within $1 / 4$ mile of Park City Mountain (provided by SE group and Park City)

In collaboration with Park City staff and AECOM, a spreadsheet was built to evaluate and calculate the mode splits of the various groups and modes that access the Park City Mountain base area. In addition to the available data, several assumptions were made and verified with City staff and AECOM. Printouts of the spreadsheet inputs and outputs are provided in Appendix A.

Daily Analysis

The daily analysis evaluated various groups of different entities that use the Park City Mountain base area. The anticipated vehicle and person trip numbers for each group were estimated for typical and peak winter days based on all provided information. The daily analysis is reported in vehicles and people, and not necessarily vehicle and person trips. The groups that were evaluated and their respective vehicle and people percentages are summarized in Table 1.

Table 1: Daily Analysis Results

Group	Vehicles	People
PCMR Day Skiing	29.1%	55.5%
Existing PCM Hotels	20.8%	16.3%
New PCM Base	13.4%	10.1%
Local Cut-through Traffic	36.5%	18.0%
Deliveries, Service Vehicles, etc.	0.2%	0.1%
TOTAL	8,379	20,060

Peak Hour Analysis

The peak hour analysis evaluated the various modes during morning and evening peak hours for winter and summer conditions. The assumptions made were those of a peak day in the respective seasons. Many elements of the daily analysis were transferred to the peak hour analysis if applicable. The modes that were evaluated and their respective vehicle and person trip percentages are summarized for winter conditions in Table 2 and summer conditions in Appendix A.

Table 2: Peak Hour Analysis Results (Winter)

Mode	\% of Vehicle Trips	\% of Person Trips
Personal Passenger Vehicles	64.7%	59.8%
Active (Walking, Biking, \& Lifts)	-	12.8%
Bus \& Shuttles	3.9%	12.1%
Ride-hail	3.6%	2.8%
Local Cut-through Traffic	27.5%	12.4%
Deliveries	0.3%	0.1%
Total	2,789	7,141

As shown in Appendix A, the peak hour analysis also estimated the number of vehicles that would use Lowell Avenue. It was also assumed that Lowell would have a single lane of capacity due to proposed bus-only lanes. To maintain an acceptable level of service, it was found that 9 and 12 buses should be added during the AM and PM peak hours, respectively. Therefore, Park City should plan on up to 36 buses per peak hour to service the area.

The peak hour analysis also estimated the number of pedestrians that would cross Lowell Avenue during peak hours. It was estimated that approximately 2,700 pedestrians would cross Lowell Avenue at some point during the morning peak hour. This is a combination of pedestrians from the adjacent neighborhoods, the existing and proposed resort buildings, day skiers, and shuttles. The primary component of this pedestrian number is the day skiers that would cross from Parcel B, accounting for approximately 1,550 pedestrians crossing during the morning peak hour. The pedestrian facilities have been designed to accommodate this demand with exclusive and dedicated pedestrian crossings on Lowell Avenue. Minimal vehicle-to-pedestrian conflict is being designed on the south end of Lowell Avenue, where the pedestrian crossings will be highest.

Appendices

MEMO 1: APPENDIX A Trip Generation

Park City - Mountain Resort TIS
Trip Generation

Saturday Daily		\# of	Unit	Trip Gen.	Trip	\%	\%	Trips	Trips	Internal		Net Trips	Net Trips	Total Daily				
Parcel	Land Use	Units	Type	Rate	Generation	Entering	Exiting	Entering	Exiting	Capture	Occupied	Entering	Exiting	Trips				
	Condominiums ${ }^{2}$	55	Dwelling Units	6.27	346	50\%	50\%	173	173	0\%	85\%	147	147	294				
	Employee Housing (ITE 220) ${ }^{1}$	89	Dwelling Units	7.32	652	50\%	50\%	326	326	50\%	-	163	163	326				
	Condominiums ${ }^{2}$	13	Dwelling Units	6.27	82	50\%	50\%	41	41	0\%	85\%	35	35	70				
C	Hotel ${ }^{2}$	249	Keys	6.27	1,562	50\%	50\%	781	781	0\%	85\%	664	664	1,328				
	Meeting Space ${ }^{3}$	20	$1,000 \mathrm{sq}$. ft.	68.80	1,376	50\%	50\%	688	688	80\%	-	138	138	276				
	Retail (ITE 820) ${ }^{1}$	31.5	1,000 sq. ft.	46.12	1,454	50\%	50\%	727	727	80\%	-	145	145	290				
D	Condominiums ${ }^{2}$	34	Dwelling Units	6.27	214	50\%	50\%	107	107	0\%	85\%	91	91	182				
	Retail (ITE 820) ${ }^{1}$	19.3	1,000 sq. ft.	46.12	892	50\%	50\%	446	446	80\%	-	89	89	178				
E	Condominiums ${ }^{2}$	42	Dwelling Units	6.27	264	50\%	50\%	132	132	0\%	85\%	112	112	224				
	Retail (ITE 820) ${ }^{1}$	22.5	1,000 sq. ft.	46.12	1,038	50\%	50\%	519	519	80\%	-	104	104	208				
	TOTAL				7,880			3,940	3,940			1,688	1,688	3,376				
Saturday AM Peak Hour Parcel Land Use		\# of	Unit	Trip Gen.	Trip	\%	\%	Trips	Trips	Internal	\%	Net Trips	Net Trips	Total a.m.				
		Units	Type	Rate	Generation	Entering	Exiting	Entering	Exiting	Capture	Occupied	Entering	Exiting	Trips				
B	Condominiums ${ }^{2}$	55	Dwelling Units	0.41	24	23\%	77\%	6	18	0\%	85\%	5	15	20				
	Employee Housing (ITE 220) ${ }^{1}$	89	Dwelling Units	0.46	42	23\%	77\%	10	32	50\%	-	5	16	21				
	Condominiums ${ }^{2}$	13	Dwelling Units	6.27	82	50\%	50\%	41	41	0\%	85\%	35	35	70				
C	Hotel ${ }^{2}$	249	Keys	0.41	104	59\%	41\%	61	43	0\%	85\%	52	37	89				
	Meeting Space ${ }^{3}$	20	1,000 sq. ft.	6.50	130	65\%	35\%	85	46	80\%	-	17	9	26				
	Retail (ITE 820) ${ }^{1}$	31.5	$1,000 \mathrm{sq}$. ft.	4.50	142	62\%	38\%	88	54	80\%	-	18	11	29				
D	Condominiums ${ }^{2}$	34	Dwelling Units	0.41	14	23\%	77\%	3	11	0\%	85\%	3	9	12				
	Retail (ITE 820) ${ }^{1}$	19.3	$1,000 \mathrm{sq}$. ft.	4.50	88	62\%	38\%	55	33	80\%	-	11	7	18				
	Condominiums ${ }^{2}$	42	Dwelling Units	0.41	18	23\%	77\%	4	14	0\%	85\%	3	12	15				
	Retail (ITE 820) ${ }^{1}$	22.5	1,000 sq. ft.	4.50	102	62\%	38\%	63	39	80\%	,	13	8	21				
	TOTAL				746			416	331			162	159	321				
Saturday PM Peak Hour Parcel Land Use		\# of	Unit	Trip Gen.	Trip	\%	\%	Trips	Trips	Internal	\%	Net Trips	Net Trips	Total p.m.				
		Units	Type	Rate	Generation	Entering	Exiting	Entering	Exiting	Capture	Occupied	Entering	Exiting	Trips				
	Condominiums ${ }^{2}$	55	Dwelling Units	0.70	40	63\%	37\%	25	15	0\%	85\%	21	13	34				
	Employee Housing (ITE 220) ${ }^{1}$	89	Dwelling Units	0.56	50	63\%	37\%	32	19	50\%	-	16	10	26				
	Condominiums ${ }^{2}$	13	Dwelling Units	6.27	82	50\%	50\%	41	41	0\%	85\%	35	35	70				
C		249	Keys	0.70	176	56\%	44\%	99	77	0\%	85\%	84	65	149				
	Meeting Space ${ }^{3}$	20	$1,000 \mathrm{sq}$. ft.	6.50	130	35\%	65\%	46	85	80\%	-	9	17	26				
	Retail (ITE 820) ${ }^{1}$	31.5	$1,000 \mathrm{sq}$. ft.	4.50	142	52\%	48\%	74	68	80\%	-	15	14	29				
D	Condominiums ${ }^{2}$	34	Dwelling Units	0.70	24	63\%	37\%	15	9	0\%	85\%	13	8	21				
	Retail (ITE 820) ${ }^{1}$	19.3	1,000 sq. ft.	4.50	88	52\%	48\%	46	42	80\%	-	9	8	17				
E	Condominiums ${ }^{2}$	42	Dwelling Units	0.70	30	63\%	37\%	19	11	0\%	85\%	16	9	25				
	Retail (ITE 820) ${ }^{1}$	22.5	1,000 sq. ft.	4.50	102	52\%	48\%	53	49	80\%	-	11	10	21				
	TOTAL	864						450	416			229	189	418				
1. Based on Institute of Transportation Engineers (ITE), Trip Generation, 10th Edition, 2017 2. Based on data collected by Hales Engineering at ski resorts in the Park City area 3. Based on data collected by Hales Engineering at other meeting space land uses SOURCE: Hales Engineering, February 2021																		

MEMO 1: APPENDIX B
 VISSIM Results

VISSIM Level of Service Report

Project:
Analysis Period: Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
S.R. 248 \& S.R. 224

Signalized

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	350	338	97	79	4	24.3	C
	L3	443	405	91	679	282	166.7	F
	Subtotal	793	743	94			101.9	F
NWB	T	680	632	93	290	40	16.7	B
	R3	242	253	105	311	27	12.1	B
	Subtotal	922	885	96			15.4	B
SEB	T	1,447	1,128	78	1,015	678	162.8	F
	L2	505	410	81	300	106	108.7	F
	Subtotal	1,952	1,538	79			148.4	F
Total		3,667	3,166	86			98.7	F

Intersection:
Homestake \& Park Ave
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	15	16	107	57	6	21.6	C
	L3	10	8	80	59	8	86.1	F
	Subtotal	25	24	96			43.1	E
NWB	T	907	870	96	197	9	2.0	A
	R3	15	14	93	157	5	0.7	A
	Subtotal	922	884	96			2.0	A
SEB	T	1,870	1,504	80	722	583	94.2	F
	L2	20	16	80	508	248	72.3	F
	Subtotal	1,890	1,520	80			94.0	F
Total		2,837	2,428	86			59.2	F

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour

Intersection: Iron Horse \& Park Ave
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	65	63	97	148	32	54.7	F
	L3	20	18	90	149	33	112.4	F
	Subtotal	85	81	95			67.5	F
NWB	T	857	819	96	18	0	0.5	A
	R3	35	31	89	27	0	-1.2	\#N/A
	Subtotal	892	850	95			0.5	A
SEB	T	1,805	1,447	80	207	132	47.3	E
	L2	75	62	83	111	5	15.0	B
	Subtotal	1,880	1,509	80			45.9	E
Total		2,857	2,440	85			31.2	D

Intersection:
Deer Valley \& Park Ave
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	220	205	93	574	192	32.6	C
	L2	375	366	98	571	190	63.8	E
	L3	55	53	96	95	20	79.8	E
	Subtotal	650	624	96			54.9	D
NWB	L	60	54	90	131	31	40.1	D
	T	202	192	95	156	36	48.3	D
	R3	70	65	93	162	40	20.8	C
	Subtotal	332	311	94			41.2	D
SEB	T	172	142	83	731	661	87.6	F
	R	1,168	929	80	735	665	111.5	F
	L2	485	391	81	609	151	45.5	D
	Subtotal	1,825	1,462	80			91.5	F
NEB	L	470	452	96	429	112	58.5	E
	R	32	28	88	353	55	26.6	C
	R2	250	233	93	347	52	35.2	D
	Subtotal	752	713	95			49.6	D
Total		3,559	3,110	87			69.5	E

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection:
15th \& Empire
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
SB	R	853	720	84	362	127	24.5	C
	L2	750	625	83	488	105	13.0	B
	Subtotal	1,603	1,345	84			19.1	B
EB	L	87	102	117	275	36	43.6	D
	R2	10	10	100	307	53	23.3	C
	L2	13	14	108	275	36	23.9	C
	Subtotal	110	126	115			39.8	D
WB	T	20	18	90	78	17	58.5	E
	R	10	9	90	81	18	17.1	B
	L3	30	28	93	78	17	38.5	D
	Subtotal	60	55	92			41.5	D
NWB	R	30	27	90	166	27	13.0	B
	R2	655	600	92	166	27	11.9	B
	Subtotal	685	627	92			11.9	B
Total		2,458	2,153	88			18.9	B

Intersection:
Type:
Lowell \& 15th

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	R	50	66	132	83	3	10.4	B
	Subtotal	50	66	132			10.4	B
EB	T	60	61	102	91	8	23.5	C
	R	5	4	80	94	6	13.2	B
	Subtotal	65	65	100			22.9	C
WB	L	522	443	85	418	162	17.1	B
	T	351	296	84	418	159	17.9	B
	Subtotal	873	739	85			17.4	B
Total		988	870	88			17.4	B

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour

NE E Access \& 15th
Unsignalized
Type:

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	R	15	15	100	32	0	7.7	A
	Subtotal	15	15	100			7.7	A
SB	L	20	20	100	56	1	8.8	A
	T	1	0	0	33	0	0.0	A
	R	1	0	0	55	1	0.0	A
	Subtotal	22	20	91			8.8	A
EB	L	1	0	0	2	0	0.0	A
	T	10	12	120	2	0	0.3	A
	R	1	0	0	2	0	0.0	A
	Subtotal	12	12	100			0.3	A
WB	L	300	252	84	69	1	1.0	A
	T	10	9	90	79	1	0.7	A
	R	25	21	84	42	0	0.7	A
	Subtotal	335	282	84			1.0	A
Total		384	329	86			1.8	A

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection:
Type:

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection: C Access \& Lowell
Type:
Unsignalized

Intersection:
Type:
Shadow Ridge \& Lowell

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	L2	50	64	128	90	15	26.8	C
	Subtotal	50	64	128			26.8	C
SEB	L	410	356	87	241	101	31.0	C
	R	45	38	84	241	101	32.8	C
	R2	50	43	86	115	10	26.5	C
	Subtotal	505	437	87			30.7	C
NEB	T	60	60	100	82	13	24.2	C
	Subtotal	60	60	100			24.2	C
SWB	T	125	103	82	85	16	29.5	C
	Subtotal	125	103	82			29.5	C
Total		740	664	90			29.6	C

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection:
North B Access \& Shadow Ridge
Type:
Unsignalized

Intersection: Shadow Ridge \& Empire
Type: Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NWB	L	50	45	90	212	50	38.9	D
	T	334	318	95	212	50	21.1	C
	Subtotal	384	363	95			23.3	C
SEB	T	546	454	83	486	87	13.3	B
	R	185	154	83	486	87	15.4	B
	Subtotal	731	608	83			13.8	B
NEB	L	393	348	89	176	26	8.4	A
	R	32	29	91	176	26	8.4	A
	Subtotal	425	377	89			8.4	A
Total		1,540	1,348	88			14.9	B

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection:
14th \& Empire
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	T	332	312	94	170	48	11.3	B
	R2	49	44	90	170	48	9.8	A
	Subtotal	381	356	93			11.1	B
SB	T	553	462	84	254	45	4.2	A
	L3	25	20	80	199	21	6.7	A
	Subtotal	578	482	83			4.3	A
EB	T	1	72	7200	21	1	0.0	A
	Subtotal	1	72	7200			0.0	A
SWB	R3	52	52	100	106	25	19.7	C
	L2	67	65	97	94	20	18.3	C
	Subtotal	119	117	98			18.9	C
Total		1,079	1,027	95			8.1	A

Intersection:
Type:
East B Access \& Empire
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	L	1	0	0	132	25	0.0	A
	T	361	337	93	109	20	8.5	A
	Subtotal	362	337	93			8.5	A
SB	T	420	361	86	82	1	1.2	A
	R	200	167	84	107	2	1.9	A
	Subtotal	620	528	85			1.4	A
EB	L	20	20	100	61	8	42.4	E
	R	1	0	0	61	8	0.0	A
	Subtotal	21	20	95			42.4	E
Total		1,003	885	88			5.0	A

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection:
South B Access \& Mano
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
SEB	L	46	43	93	55	9	14.9	B
	R	1	0	0	55	9	0.0	A
	Subtotal	47	43	91			14.9	B
NEB	L	1	0	0	34	10	0.0	A
	T	260	244	94	29	9	1.2	A
	Subtotal	261	244	93			1.2	A
SWB	T	200	171	86	25	0	0.8	A
	R	165	143	87	47	0	1.3	A
	Subtotal	365	314	86			1.0	A
Total		673	601	89			2.1	A

Intersection:
Type:

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Morning Peak Hour
Project \#: UT19-1481

Intersection:
Manor \& Empire
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	T	60	56	93	163	32	7.4	A
	L3	5	4	80	113	25	9.6	A
	Subtotal	65	60	92			7.5	A
SB	T	60	52	87	133	9	6.6	A
	R2	360	311	86	133	9	3.2	A
	Subtotal	420	363	86			3.6	A
EB	T	1	26	2600	5	0	0.0	A
	Subtotal	1	26	2600			0.0	A
WB	T	1	27	2700	12	0	0.0	A
	Subtotal	1	27	2700			0.0	A
NEB	R3	5	5	100	69	11	0.5	A
	L2	301	281	93	97	15	2.2	A
	Subtotal	306	286	93			2.2	A
Total		487	476	98			3.1	A

Intersection:
Type:

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
S.R. 248 \& S.R. 224

Signalized

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	450	441	98	121	14	15.3	B
	L3	390	379	97	386	123	83.5	F
	Subtotal	840	820	98			46.8	D
NWB	T	1,526	1,288	84	533	76	14.8	B
	R3	506	474	94	528	54	13.4	B
	Subtotal	2,032	1,762	87			14.5	B
SEB	T	1,146	1,146	100	284	28	9.4	A
	L2	500	495	99	374	135	81.2	F
	Subtotal	1,646	1,641	100			31.1	C
Total		4,518	4,223	93			27.2	C

Intersection:
Homestake \& Park Ave
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	30	30	100	130	22	70.3	F
	L3	20	19	95	131	24	121.1	F
	Subtotal	50	49	98			90.0	F
NWB	T	2,002	1,738	87	219	11	1.6	A
	R3	20	21	105	179	6	0.4	A
	Subtotal	2,022	1,759	87			1.6	A
SEB	T	1,511	1,499	99	487	107	18.9	C
	L2	25	24	96	245	23	46.5	E
	Subtotal	1,536	1,523	99			19.3	C
Total		3,608	3,331	92			10.9	B

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Iron Horse \& Park Ave
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	95	89	94	181	41	55.7	F
	L3	20	20	100	181	42	90.4	F
	Subtotal	115	109	95			62.1	F
NWB	T	1,927	1,671	87	33	1	0.4	A
	R3	50	47	94	45	1	-1.3	\#N/A
	Subtotal	1,977	1,718	87			0.4	A
SEB	T	1,451	1,427	98	167	38	15.0	B
	L2	80	78	98	193	33	62.4	F
	Subtotal	1,531	1,505	98			17.4	C
Total		3,623	3,332	92			10.1	B

Intersection:
Deer Valley \& Park Ave
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	680	608	89	888	738	125.8	F
	L2	364	321	88	885	736	253.0	F
	L3	75	69	92	273	35	218.9	F
	Subtotal	1,119	998	89			173.2	F
NWB	L	59	58	98	93	14	63.9	E
	T	400	399	100	498	147	74.5	E
	R3	70	71	101	503	152	58.6	E
	Subtotal	529	528	100			71.2	E
SEB	T	365	363	99	534	92	38.0	D
	R	571	553	97	537	94	10.0	A
	L2	535	518	97	716	361	77.6	E
	Subtotal	1,471	1,434	97			41.5	D
NEB	L	897	701	78	707	389	97.6	F
	R	49	38	78	377	43	44.7	D
	R2	379	319	84	370	40	46.1	D
	Subtotal	1,325	1,058	80			80.2	F
Total		4,444	4,018	90			88.3	F

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
15th \& Empire
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
SB	R	406	379	93	381	53	8.8	A
	L2	588	550	94	522	54	11.5	B
	Subtotal	994	929	93			10.4	B
EB	L	298	312	105	347	76	62.6	E
	R2	10	9	90	378	98	40.0	D
	L2	19	21	111	347	76	38.2	D
	Subtotal	327	342	105			60.5	E
WB	T	19	18	95	61	7	48.7	D
	R	13	14	108	63	7	34.0	C
	L3	15	14	93	61	7	41.6	D
	Subtotal	47	46	98			42.1	D
NWB	R	59	49	83	709	295	71.8	E
	R2	1,014	738	73	709	295	76.3	E
	Subtotal	1,073	787	73			76.0	E
Total		2,441	2,104	86			43.7	D

Intersection:
Type:
Lowell \& 15th

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
NE E Access \& 15th
Type:
Unsignalized

Intersection:
Type:
Three Kings \& 15th

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	R	229	226	99	131	20	16.6	C
	Subtotal	229	226	99			16.6	C
SB	L	25	26	104	57	1	10.9	B
	T	1	0	0	35	1	0.0	A
	R	1	0	0	56	1	0.0	A
	Subtotal	27	26	96			10.9	B
EB	L	1	0	0	4	0	0.0	A
	T	7	8	114	4	0	2.8	A
	R	1	0	0	4	0	0.0	A
	Subtotal	9	8	89			2.8	A
WB	L	56	56	100	17	0	0.7	A
	T	7	6	86	78	2	0.5	A
	R	25	23	92	4	0	0.4	A
	Subtotal	88	85	97			0.6	A
Total		353	345	98			12.0	B

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

Type:		Unsignaliz						
Approach	Movement	Demand	Volu	ved			Dela	(sec)
Approach	Movement	Volume	Avg	\%	Max	Avg	Avg	LOS
	T	50	65	130	97	0	0.5	A
	Subtotal	50	65	130			0.5	A
	T	313	286	91	269	37	28.8	D
	Subtotal	313	286	91			28.8	D
	L	8	8	100	27	0	30.6	D
	Subtotal	8	8	100			30.6	D
Total		371	359	97			23.4	C

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection: C Access \& Lowell
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NWB	T	50	65	130	0	0	1.2	A
	Subtotal	50	65	130			1.2	A
SEB	,	193	177	92	134	26	31.0	D
	R	128	114	89	174	38	13.8	B
	Subtotal	321	291	91			24.3	C
NEB	R	116	86	74	115	41	112.3	F
	Subtotal	116	86	74			112.3	F
Total		487	442	91			35.4	E

Intersection:
Type:
Shadow Ridge \& Lowell

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
North B Access \& Shadow Ridge
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NWB	L	1	0	0	183	75	0.0	A
	R	135	113	84	183	76	115.1	F
	Subtotal	136	113	83			115.1	F
NEB	T	324	286	88	223	59	33.2	D
	R	22	20	91	256	77	24.5	C
	Subtotal	346	306	88			32.6	D
SWB	L	40	36	90	41	1	7.9	A
	T	24	21	88	20	0	1.5	A
	Subtotal	64	57	89			5.5	A
Total		546	476	87			49.1	E

Intersection: Shadow Ridge \& Empire
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NWB	L	14	10	71	222	69	38.2	D
	T	689	457	66	222	69	27.3	C
	Subtotal	703	467	66			27.5	C
SEB	T	549	509	93	526	74	19.1	B
	R	50	47	94	526	74	18.9	B
	Subtotal	599	556	93			19.1	B
NEB	L	354	307	87	185	100	27.4	C
	R	105	92	88	185	100	24.2	C
	Subtotal	459	399	87			26.6	C
Total		1,761	1,422	81			23.8	C

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

Intersection:
Type:
East B Access \& Empire
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	L	1	0	0	262	141	0.0	A
	T	608	523	86	234	116	43.7	E
	Subtotal	609	523	86			43.7	E
SB	T	606	555	92	99	5	3.4	A
	R	37	34	92	128	8	2.9	A
	Subtotal	643	589	92			3.4	A
EB	L	213	11	5	145	127	1342.8	F
	R	1	0	0	145	127	0.0	A
	Subtotal	214	11	5			1342.8	F
Total		1,466	1,123	77			34.0	D

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

Type:		nsignaliz						
Approach	Movement	Demand	Volu	ved			Dela	(sec)
Approach	movement	Volume	Avg	\%	Max	Avg	Avg	LOS
	L	140	68	49	169	115	374.4	F
SEB	R	1	0	0	169	115	0.0	A
	Subtotal	141	68	48			374.4	F
	L	1	0	0	178	61	0.0	A
NEB	T	392	376	96	152	47	20.6	C
	Subtotal	393	376	96			20.6	C
	T	414	372	90	109	5	3.0	A
SWB	R	80	74	93	135	7	2.6	A
	Subtotal	494	446	90			2.9	A
Total		1,028	890	87			34.4	D

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NWB	T	1	0	0	266	49	0.0	A
	R	232	234	101	233	33	39.0	E
	Subtotal	233	234	100			39.0	E
SEB	L	160	143	89	146	53	63.3	F
	T	1	0	0	176	67	0.0	A
	Subtotal	161	143	89			63.3	F
SWB	L	254	230	91	62	6	1.8	A
	R	160	143	89	62	6	1.4	A
	Subtotal	414	373	90			1.6	A
Total		808	750	93			25.0	C

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Manor \& Empire
Type:
Unsignalized

Intersection:
Type:

VISSIM Level of Service Report

Project:
Analysis Period: Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	280	282	101	50	2	6.3	A
	L3	354	356	101	242	83	63.0	E
	Subtotal	634	638	101			37.9	D
NWB	T	544	543	100	210	20	10.4	B
	R3	194	225	116	225	14	8.2	A
	Subtotal	738	768	104			9.8	A
SEB	T	1,158	1,161	100	250	17	5.4	A
	L2	404	400	99	279	90	67.7	E
	Subtotal	1,562	1,561	100			21.4	C
Total		2,934	2,967	101			22.0	C

Intersection:
Homestake \& Park Ave
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	12	13	108	38	1	10.2	B
	L3	8	7	88	40	1	19.9	C
	Subtotal	20	20	100			13.6	B
NWB	T	726	755	104	166	7	2.0	A
	R3	12	11	92	126	3	0.1	A
	Subtotal	738	766	104			2.0	A
SEB	T	1,496	1,501	100	176	6	2.0	A
	L2	16	16	100	22	0	5.5	A
	Subtotal	1,512	1,517	100			2.0	A
Total		2,270	2,303	101			2.1	A

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection: Iron Horse \& Park Ave
Type: Unsignalized

Intersection:
Deer Valley \& Park Ave
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	176	168	95	463	121	7.3	A
	L2	300	310	103	460	119	62.8	E
	L3	44	45	102	95	17	70.6	E
	Subtotal	520	523	101			45.7	D
NWB	L	48	47	98	67	7	33.1	C
	T	162	160	99	115	23	37.2	D
	R3	56	54	96	121	26	14.1	B
	Subtotal	266	261	98			31.7	C
SEB	T	138	140	101	558	153	31.0	C
	R	934	933	100	562	156	24.8	C
	L2	388	384	99	370	72	31.7	C
	Subtotal	1,460	1,457	100			27.3	C
NEB	L	376	410	109	411	106	60.8	E
	R	26	24	92	301	53	30.5	C
	R2	200	202	101	295	49	39.3	D
	Subtotal	602	636	106			52.8	D
Total		2,848	2,877	101			36.7	D

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
15th \& Empire
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
SB	R	682	689	101	201	17	6.6	A
	L2	600	602	100	332	39	10.0	A
	Subtotal	1,282	1,291	101			8.2	A
EB	L	70	93	133	295	29	45.1	D
	R2	8	9	113	326	45	21.3	C
	L2	10	12	120	295	29	25.7	C
	Subtotal	88	114	130			41.2	D
WB	T	16	15	94	68	8	46.7	D
	R	8	8	100	71	8	18.1	B
	L3	24	23	96	68	8	38.9	D
	Subtotal	48	46	96			37.8	D
NWB	R	24	23	96	147	22	12.6	B
	R2	524	537	102	147	22	11.1	B
	Subtotal	548	560	102			11.1	B
Total		1,966	2,011	102			11.6	B

Intersection:
Type:
Lowell \& 15th

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
NE E Access \& 15th
Type:
Unsignalized

Intersection:
Type:
Three Kings \& 15th

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	R	12	12	100	31	0	7.4	A
	Subtotal	12	12	100			7.4	A
SB	L	16	17	106	56	1	8.6	A
	T	1	0	0	33	0	0.0	A
	R	1	0	0	55	1	0.0	A
	Subtotal	18	17	94			8.6	A
EB	L	1	0	0	4	0	0.0	A
	T	8	8	100	4	0	0.5	A
	R	1	0	0	4	0	0.0	A
	Subtotal	10	8	80			0.5	A
WB	L	240	240	100	62	0	0.9	A
	T	8	8	100	76	1	0.6	A
	R	20	21	105	36	0	0.6	A
	Subtotal	268	269	100			0.9	A
Total		308	306	99			1.6	A

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
Type:

West D Access \& Lowell
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b-20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection: C Access \& Lowell
Type:
Unsignalized

Intersection:
Type:
Shadow Ridge \& Lowell

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	L2	40	64	160	90	15	26.8	C
	Subtotal	40	64	160			26.8	C
SEB	L	328	334	102	235	60	24.6	C
	R	36	35	97	235	60	24.8	C
	R2	40	43	108	106	8	23.1	C
	Subtotal	404	412	102			24.5	C
NEB	T	48	49	102	61	5	24.7	C
	Subtotal	48	49	102			24.7	C
SWB	T	100	97	97	91	15	28.8	C
	Subtotal	100	97	97			28.8	C
Total		592	622	105			25.4	C

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
North B Access \& Shadow Ridge
Type:
Unsignalized

Intersection: Shadow Ridge \& Empire
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NWB	L	40	38	95	204	37	36.4	D
	T	267	274	103	204	37	18.9	B
	Subtotal	307	312	102			21.0	C
SEB	T	437	435	100	425	51	14.4	B
	R	148	148	100	425	51	16.8	B
	Subtotal	585	583	100			15.0	B
NEB	L	314	321	102	164	12	6.4	A
	R	26	26	100	164	12	7.8	A
	Subtotal	340	347	102			6.5	A
Total		1,232	1,242	101			14.1	B

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
Type:

Type:		Unsignalized			Queue (ft)			
Approach	Movement	Demand	Volu	rved			Delay/Veh (sec)	
		Volume	Avg	\%	Max	Avg	Avg	LOS
NB	T	266	268	101	131	14	6.5	A
	R2	39	39	100	131	14	5.8	A
	Subtotal	305	307	101			6.4	A
SB	T	442	443	100	206	20	3.6	A
	L3	20	18	90	153	4	5.0	A
	Subtotal	462	461	100			3.6	A
EB	T	1	77	7700	21	1	0.0	A
	Subtotal	1	77	7700			0.0	A
SWB	R3	42	42	100	72	7	12.8	B
	L2	54	53	98	59	4	15.0	B
	Subtotal	96	95	99			14.0	B
Total		864	940	109			5.3	A

Intersection:
Type:

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
South B Access \& Mano
Type:

Intersection:
Type:
Manor \& Lowell

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Morning Peak Hour
Project \#: UT19-1481

Intersection:
Manor \& Empire
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	T	48	48	100	92	4	6.7	A
	L3	4	4	100	43	1	9.2	A
	Subtotal	52	52	100			6.9	A
SB	T	48	49	102	111	2	4.8	A
	R2	288	290	101	111	2	2.3	A
	Subtotal	336	339	101			2.7	A
EB	T	1	26	2600	5	0	0.0	A
	Subtotal	1	26	2600			0.0	A
WB	T	1	27	2700	12	0	0.0	A
	Subtotal	1	27	2700			0.0	A
NEB	R3	4	5	125	29	0	0.4	A
	L2	241	240	100	60	1	1.1	A
	Subtotal	245	245	100			1.0	A
Total		390	444	114			2.2	A

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
Total								

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future $\mathbf{2 0 4 0}$ Scenario 2b-20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	360	359	100	65	6	9.6	A
	L3	312	317	102	246	78	64.1	E
	Subtotal	672	676	101			35.2	D
NWB	T	1,221	1,127	92	421	56	13.2	B
	R3	405	429	106	363	37	11.0	B
	Subtotal	1,626	1,556	96			12.6	B
SEB	T	917	913	100	194	12	4.7	A
	L2	400	401	100	256	85	64.0	E
	Subtotal	1,317	1,314	100			22.8	C
Total		3,615	3,546	98			20.7	C

Intersection:
Homestake \& Park Ave
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	24	24	100	52	2	14.0	B
	L3	16	16	100	53	3	24.9	C
	Subtotal	40	40	100			18.4	C
NWB	T	1,602	1,533	96	186	11	1.7	A
	R3	16	18	113	146	6	0.4	A
	Subtotal	1,618	1,551	96			1.7	A
SEB	T	1,209	1,211	100	137	5	1.7	A
	L2	20	20	100	49	0	18.6	C
	Subtotal	1,229	1,231	100			2.0	A
Total		2,887	2,822	98			2.0	A

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection: Iron Horse \& Park Ave
Type: Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	76	72	95	72	5	13.4	B
	L3	16	15	94	73	5	22.0	C
	Subtotal	92	87	95			14.9	B
NWB	T	1,542	1,480	96	0	0	0.3	A
	R3	40	42	105	2	0	-1.1	\#N/A
	Subtotal	1,582	1,522	96			0.2	A
SEB	T	1,161	1,161	100	32	0	0.8	A
	L2	64	64	100	67	8	24.7	C
	Subtotal	1,225	1,225	100			2.0	A
Total		2,899	2,834	98			1.5	A

Intersection:
Deer Valley \& Park Ave
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
WB	R2	544	536	99	556	209	26.7	C
	L2	291	293	101	553	206	95.3	F
	L3	60	62	103	115	25	88.2	F
	Subtotal	895	891	100			53.6	D
NWB	L	47	46	98	67	9	41.5	D
	T	320	319	100	285	59	49.5	D
	R3	56	55	98	290	63	31.2	C
	Subtotal	423	420	99			46.2	D
SEB	T	292	294	101	279	59	33.4	C
	R	457	454	99	283	61	5.2	A
	L2	428	426	100	448	126	46.3	D
	Subtotal	1,177	1,174	100			27.2	C
NEB	L	718	666	93	655	209	65.6	E
	R	39	36	92	456	68	31.4	C
	R2	303	304	100	449	64	39.3	D
	Subtotal	1,060	1,006	95			56.4	E
Total		3,555	3,491	98			44.7	D

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
15th \& Empire
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
SB	R	325	328	101	123	4	1.6	A
	L2	470	466	99	260	15	6.4	A
	Subtotal	795	794	100			4.4	A
EB	L	238	263	111	337	59	44.6	D
	R2	8	8	100	368	80	25.6	C
	L2	15	18	120	337	59	41.8	D
	Subtotal	261	289	111			43.9	D
WB	T	15	15	100	57	5	43.1	D
	R	10	10	100	60	5	16.4	B
	L3	12	11	92	57	5	39.8	D
	Subtotal	37	36	97			34.7	C
NWB	R	47	49	104	383	50	18.7	B
	R2	811	730	90	383	50	18.5	B
	Subtotal	858	779	91			18.5	B
Total		1,951	1,898	97			16.8	B

Intersection:
Type:
Lowell \& 15th

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	R	40	65	163	118	6	16.8	B
	Subtotal	40	65	163			16.8	B
EB	T	222	220	99	134	41	17.9	B
	R	2	3	150	136	40	6.1	A
	Subtotal	224	223	100			17.7	B
WB	L	248	248	100	201	31	14.9	B
	T	92	94	102	201	24	13.7	B
	Subtotal	340	342	101			14.6	B
Total		604	630	104			16.0	B

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
NE E Access \& 15th
Type:
Unsignalized

Intersection:
Type:
Three Kings \& 15th

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	R	183	182	99	91	9	10.8	B
	Subtotal	183	182	99			10.8	B
SB	L	20	20	100	56	1	9.2	A
	T	1	0	0	33	0	0.0	A
	R	1	0	0	55	1	0.0	A
	Subtotal	22	20	91			9.2	A
EB	L	1	0	0	2	0	0.0	A
	T	6	6	100	2	0	1.4	A
	R	1	0	0	2	0	0.0	A
	Subtotal	8	6	75			1.4	A
WB	L	45	47	104	17	0	0.5	A
	T	6	5	83	76	1	0.3	A
	R	20	19	95	2	0	0.4	A
	Subtotal	71	71	100			0.4	A
Total		284	279	98			7.9	A

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

Type:		Unsignaliz						
		Demand	Volu	red			Dela	(sec)
Approach	Movement	Volume	Avg	\%	Max	Avg	Avg	LOS
	T	40	65	163	97	0	0.5	A
	Subtotal	40	65	163			0.5	A
	T	250	255	102	88	1	3.8	A
	Subtotal	250	255	102			3.8	A
	L	6	7	117	22	0	13.6	B
	Subtotal	6	7	117			13.6	B
Total		296	327	110			3.3	A

Intersection:
Type:

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection: C Access \& Lowell
Type:
Unsignalized

Intersection: Shadow Ridge \& Lowell
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	L2	40	64	160	90	14	25.1	C
	Subtotal	40	64	160			25.1	C
SEB	L	187	191	102	167	22	18.9	B
	R	20	20	100	167	22	19.5	B
	R2	40	44	110	106	7	19.6	B
	Subtotal	247	255	103			19.1	B
NEB	T	90	96	107	110	11	25.8	C
	Subtotal	90	96	107			25.8	C
SWB	T	19	18	95	28	1	8.2	A
	Subtotal	19	18	95			8.2	A
Total		396	433	109			21.0	C

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
North B Access \& Shadow Ridge
Type:
Unsignalized

Intersection: Shadow Ridge \& Empire
Type:
Signalized

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

Type:		nsignaliz						
Approach	Movement	Demand	Volu	rved			Dela	(sec)
Approach	Movement	Volume	Avg	\%	Max	Avg	Avg	LOS
	T	546	463	85	181	119	16.4	C
NB	R2	110	92	84	181	119	14.9	B
	Subtotal	656	555	85			16.1	C
	T	499	494	99	301	22	6.1	A
SB	L3	24	25	104	257	16	14.5	B
	Subtotal	523	519	99			6.5	A
	T	1	76	7600	21	1	0.0	A
	Subtotal	1	76	7600			0.0	A
	R3	16	17	106	49	2	23.0	C
SWB	L2	15	14	93	37	1	13.5	B
	Subtotal	31	31	100			18.7	C
Total		1,211	1,181	98			10.9	B

Intersection:
Type:
East B Access \& Empire
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	L	1	0	0	246	48	0.0	A
	T	486	478	98	217	36	19.8	C
	Subtotal	487	478	98			19.8	C
SB	T	485	481	99	86	2	1.9	A
	R	30	29	97	114	3	1.7	A
	Subtotal	515	510	99			1.9	A
EB	L	170	76	45	155	124	378.5	F
	R	1	0	0	155	124	0.0	A
	Subtotal	171	76	44			378.5	F
Total		1,173	1,064	91			33.0	D

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Type:

		Unsignalized						
Approach	Movement	Demand	Volu	ved			Dela	(sec)
Approach	Movement	Volume	Avg	\%	Max	Avg	Avg	LOS
	L	112	105	94	102	15	28.6	D
SEB	R	1	0	0	102	15	0.0	A
	Subtotal	113	105	93			28.6	D
	L	1	0	0	39	2	0.0	A
NEB	T	314	311	99	29	2	2.0	A
	Subtotal	315	311	99			2.0	A
	T	331	321	97	22	0	1.0	A
SWB	R	64	64	100	38	1	1.4	A
	Subtotal	395	385	97			1.1	A
Total		823	801	97			5.1	A

Intersection:
Type:
Manor \& Lowell

VISSIM Level of Service Report

Project:
Analysis Period:
Time Period:

PCMR
Future 2040 Scenario 2b - 20\% Reduction
Evening Peak Hour
Project \#: UT18-1215

Intersection:
Manor \& Empire
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Queue (ft)		Delay/Veh (sec)	
			Avg	\%	Max	Avg	Avg	LOS
NB	T	65	66	102	70	5	12.4	B
	L3	4	4	100	50	2	12.7	B
	Subtotal	69	70	101			12.4	B
SB	T	94	99	105	246	27	8.2	A
	R2	391	384	98	246	26	5.5	A
	Subtotal	485	483	100			6.0	A
EB	T	1	26	2600	5	0	0.0	A
	Subtotal	1	26	2600			0.0	A
WB	T	1	27	2700	12	0	0.0	A
	Subtotal	1	27	2700			0.0	A
NEB	R3	4	4	100	129	14	2.0	A
	L2	422	412	98	172	22	3.5	A
	Subtotal	426	416	98			3.5	A
Total		556	606	109			5.1	A

Intersection:
Type:

MEMO 2: APPENDIX A Required Parking (City Code)

PARKING REQUIREMENTS PER LMC 15-3																										
RESIDENTIAL PARKING REQ'S	MAX AREA	PARKING REQ'S	Rate	PARCEL B					PARCELC						PARCELE				PARCEL D			TOTAL				
				condos	AFF Housing	$\begin{gathered} \text { EMP } \\ \text { Housing } \end{gathered}$	сомм	SUBTOTAL	$\begin{gathered} \text { GUESTROO } \\ \text { MS } \end{gathered}$	condos	MEETING	Retall	COMM	subtotal	CONDO	SkICLUB	сомм	subtotal	CONDO	сомм	subtotal					
Hotel Room	650	1 per room	1					0	249					249				0			0	249				
Apt/Condo<=1000 SQFT	1000	1 per DU	1	9	49	22		80		2				2	8			8	18		18	108				
1000 SQFT < APt/Condo <2000 SQFT	2000	1.5 per DU	1.5	32	8	7		71		9				14	34			51	16		24	160				
Apt/Condo> $=2000$ SQFT	none	2 per DU	2	14	0	3		34		2				4				0			0	38				
Total Residential Required				85	61	39		185	249	20				269				59			42	555				
COMMERCIAL PARKING REQ'S																										
Accessory Resort Use Employees		1 per 400 sqft	2.5					0						0				0			0	0				
Commerical Use		TBD																				0				
Meeting Space		1 per 200 saft	5					0			20000			100				0			0	100				
Retail\& Service Commerical, Minor		3 per 1000 saft	3.00					0						0				0			0	0				
Retail\& Service Commerical, Major		5 per 1000 sqft	5					0					31500	158			22500	113		19300	97	368				
Multi-tenant complex		3.5 per 1000 sqft	3.50					0						0				0			0	0				
Restaurant, Standard and Bar		1 per 100 sqft	10					0						0				0			0	0				
Day Skier Parking		1200					760	760						0			440	440			0	1200				
TOTAL REQUIRED, EXCLUDING COMM								945						269				499			42	1755				
Total required								945						527				612			139	2223				
TOTAL PROVIDED								906						185				535			95	1721				

MEMO 2: APPENDIX B Proposed Alternative Parking Calculations

PARKING REQUIREMENTS PER LMC 15-3																							
RESIDENTIAL PARKING REQ'S	MAX AREA	PARKING REQ'S	Rate	PARCEL ${ }^{\text {b }}$					PARCEL C						PARCELE				PARCELD			TOTAL	
				condos	AFF Housing	$\begin{aligned} & \text { EMP } \\ & \text { Housing } \end{aligned}$	сомм	subtotal	$\begin{gathered} \text { GUESTROO } \\ \text { Ms } \end{gathered}$	condos	meeting	ReTAIL	сомм	SUBTOTAL	CONDO	SkICLUB	сомм	SUBtotal	CONDO	сомм	subtotal		
Hotel Room	650	1 per room	1					0	249					249				0			0	249	
Apt/Condo<=1000 SQFT	1000	1 per DU	1	9	49	22		80		2				2	8			8	18		18	108	
1000 SQFT < Apt/Condo <2000 SQFT	2000	1.5 per DU	1	32	8	7		47		9				9	34			34	16		16	106	
Apt/Condo>=2000 SQFT	none	2 per DU	1	14	0	3		17		2				2				0			0	19	
Total Residential Required				55	57	0		144	249	13				262	42			42	34		34	482	
COMMERCIAL PARKING REQ'S																							
Accessory Resort Use Employees		1 per 400 saft	2.5					0						0				0			0	0	
Commerical Use		TBD																				0	
Meeting Space		1 per 200 saft	5					0			20000			100				0			0	100	
Retail\& Service Commerical, Minor		3 per 1000 saft	3.00					0						0				0			0	0	
Retail\& Service Commerical, Major		5 per 1000 saft	5					0					31500	158			22500	113		19300	97	368	
Multi-tenant complex		3.5 per 1000 saft	3.50					0						0				0			0	0	
Restaurant, Standard and Bar		1 per 100 saft	10					0						0				0			0	0	
Day Skier Parking		1200					760	760						0			440	440			0	1200	
TOTAL REQUIRED, EXCLUDING COMM								904						262				482			34	1682	
Total required								904						520				595			131	2150	
TOTAL PROVIDED								906						185				535			95	1721	

MEMO 5: Appendix A
 People-Based Analysis Spreadsheet

$\mathbf{V / C}$	LOS
\mathbf{O}	A
0.3	B
0.5	C
0.75	D
0.85	E
1	F

$$
\begin{aligned}
& \text { Existing Hotels } \quad 710 \\
& \begin{array}{l|l|l|}
& & \\
\text { Existing Hotels } & 710 \\
& & \\
\text { New Development - Lot } & 114 \\
\hline & 167 \\
\hline
\end{array} \\
& \begin{array}{l|l|}
\text { New Development - Lot C } \mathrm{C} & 167 \\
& 167 \\
& \\
\hline
\end{array} \\
& \text { New Development - Lot } \mathrm{E} \square 103
\end{aligned}
$$

30%
AM Traffic on Lowell
300%

80% of off-site Peds X -ing Lowe
19% AM Winter to Summer Modifier
36\% PM Winter to Summer Modififier

[^0]: 1. Intersection LOS values represent the overall intersection average for roundabout, signalized, and all-way stop-controlled (AWSC) intersections (uppercase letter) and the worst movement for all other unsignalized intersections (lowercase letter) 2. BG = Background (without project traffic), PP = Plus Project (with project traffic)
 2. Intersection results not recorded due to proximity to Silver King Drive. LOS results were estimated.

 Source: Hales Engineering, February 2021

